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ABSTRACT
The vast and complex design space for haptic technology demands
a diversity in form factors, type of stimuli and application contexts.
While research has introduced a large variety of different haptic
interfaces as a response, the number of technical contributions has
produced a new challenge for reusing and sharing new hardware
designs among researchers. In this workshop paper, we identify
typical adoption barriers and discuss new strategies and ideas for
the design process of haptic devices, to enable more sustainable
growth for the design of new haptic technology.
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1 INTRODUCTION
In contrast to the visual or auditory sense, the haptic sense is spread
all over the human body. This presents a wide and complex design
space for technology for creating meaningful haptic experiences. To
address different locations and areas of the human body, a variety of
form factors were proposed ranging from e.g., bendable handheld
controllers [22, 23, 34] over retractable wires to constrain hand
movements [8], to rings worn on users’ fingers [1, 18] and chemicals
for different skin sensations [13], or systems incorporated into a
head-mounted display (HMD) to target the user’s face [31]. The
complexity of the design space further increases with the type of
presented stimuli such as vibrotactile and squeeze feedback [20],
temperature [3, 19] or force feedback [9], as well as their targeted
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haptic experiences e.g., conveying weight [4, 6, 29], shape [2] or
textures [30]. The result is a multifaceted landscape of custom-built
hardware solutions that are, however, difficult to adopt, scale, or
build upon. This barrier can have a negative effect on the impact of
technical contributions to the haptic research community.

In this workshop paper, we identify typical barriers in the de-
velopment of new haptic technology that discourage adoption and
reuse among researchers and discuss several strategies in the design
process tomitigate these barriers and facilitate an easier exchange of
novel hardware designs. To this end, we discuss existing approaches,
examine similarities in form factors, hardware components and ap-
plication contexts of haptic designs and explore opportunities to
utilise these overlaps to foster a long-term and sustainable exchange
and deployment of haptic technology. In addition, we examine ap-
proaches on how to incorporate standardised interaction devices to
elevate haptic feedback capabilities of consumer systems to move
towards standardised haptic technology.

2 ADOPTION BARRIERS IN SHARING AND
REUSING HAPTIC TECHNOLOGY

Designing and building new hardware is an essential area of re-
search to enable the computation of haptic experiences. This is
especially true considering the limited availability of standardised
haptic systems on the consumer market. However, while such tech-
nical inventions contribute to the necessary foundation for design-
ing and exploring haptic experiences, several challenges arise when
sharing these contributions among students and researchers. In
this section, we identify common challenges as the first important
step towards mitigating their adverse effects on the deployment of
new haptic interfaces.

Device dependency. Publishing a new haptic feedback design of-
ten goes hand in hand with introducing a custom-built device that
is used for generating such feedback. While large parts of the con-
tribution such as the documentation of the hardware design or its
evaluation can be published and made accessible through a scien-
tific paper, the device itself remains inaccessible. Such contributions
often have, therefore, a strong dependency on the proposed device
itself. Especially when it comes to conveying the produced human
haptic experience, language lacks sufficient vocabulary and cannot
replace the experience of trying out the device. The dependency on
the physically inaccessible device strongly limits the opportunities
to extend or build upon such hardware contributions.

Feedback dependency. Due to the nature of the experimental
and exploratory approach, the computational capability of a new
haptic system can often produce only one particular stimulus, e.g.,
resistive forces, skin stretch or electrical muscle stimulation (EMS).

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Workshop on Sustainable Haptic Design at CHI’22, April 30 – May 5, 2022, New Orleans, USA Carolin Stellmacher

The narrow range of achievable haptic feedback and stimulation can,
therefore, limit the scope of feasible application cases and the "out
of the box" reuse of an introduced system. This constraint further
reduces the generalizability of the design of a haptic interface.

Limited scalability. Rebuilding an introduced haptic device inside
the lab would enable students and researchers to use the proposed
system and conduct further investigations with it, scaling the value
of the contribution. This would, especially, provide members of
the haptic research community with necessary hardware, whose
research focus lies on designing and studying human haptic experi-
ences and less on hardware construction. However, the absence of
sufficient documentation with detailed instructions, the necessary
parts and the used tools rules out the possibility for others to benefit
from the engineering work and design new haptic experiences for
a proposed system.

3 SUSTAINABLE DESIGN CHOICES FOR
HAPTIC TECHNOLOGY

To overcome such difficulties and challenges in the future, in this
section we explore possible strategies and ideas for researchers
and engineers to consider, for making a new haptic interface more
accessible to the community. The concepts can be applied at dif-
ferent stages of the design process, and their feasibility varies on a
case-by-case scenario.

Open source for reproduction. Publishing comprehensive building
instructions and the corresponding software application provides
an opportunity to improve the scalability of new haptic technolo-
gies. This allows students and researchers to recreate a device on
their own and to overcome the inaccessibility of the original system.
Scenarios can include researchers rebuilding a device in their lab
or at an organized workshop at a haptics conference. In addition,
incorporating such a building project into teaching haptics can pro-
vide students with hands-on experiences for educational purposes.
Documentations for haptic devices have been previously published
in an online repository such as GitHub alongside the scientific pub-
lication, e.g., Zenner & Krüger [32] referring to [33], or Seongkook
et al. [10] referring to [11]. To further lower the entry barrier, we
see a video tutorial shared on online platforms such as YouTube or
Vimeo as another medium for a more elaborate demonstration of
the instruction process. Another strong benefit of this open source
approach is also that it can be prepared for already existing and
published haptic hardware designs.

Building with off-the-shelf components. An important aspect to
keep in mind during the design process is the availability of the var-
ious hardware components that are incorporated into a new device.
Whenever possible and feasible, using off-the-shelf products that
are easily available and of reasonable cost makes the haptic design
more verifiable and accessible. A common technique for manufac-
turing individual components is 3D printing, as it provides the often
required freedom and flexibility for achieving a meaningful haptic
experience. While 3D printers might be available at university labs
or other research institutions, it can be an exclusion criterion for
members of the research community to adopt the haptic design.

Sharing components of similar designs. Despite the vast diver-
sity in hardware designs of haptic interfaces, typical form factors
such as finger-worn devices and their shared application contexts
dictate commonly reoccurring features and physical specifications.
Looking at similar haptic interfaces at the beginning of the design
process and identifying overlaps and similarities between the own
undertaking and existing systems would allow reusing, rebuilding,
or adopting already evaluated and reliable artefacts where feasible.
While this reduces the risk of reinventing hardware for identical or
similar functionalities, it also reduces the time, cost and complexity
that goes into the construction. Similarities in form factors and
application cases that might offer potential for reusing a haptic
design might be, e.g., the mechanics that are needed for strapping
and actuating a tiny belt around the fingertip used for different hap-
tic experiences to create skin deformation [16, 18, 25], or movable
plates used by several other devices to achieve a similar sensation
at the finger pad [5, 26, 27].

Designing modular or transformable haptic devices. Widening the
range of computational capability and possible form factors during
the design process can reduce the use case dependency and open
up the technology to be used and build upon in a broader scope.
The gained flexibility might particularly enable a more long-term
and sustainable haptic design contribution that can be adopted and
extended by researchers of similar research areas and for more
diverse solutions and scenarios. Different techniques for modular
concepts have already been proposed [12, 14, 17] such as a haptic
interface that can be adapted and reused to render pressure and
thermal feedback at multiple locations of the human body [36].

Diversify feedback through pseudo-haptics. To reuse an existing
haptic device while still widening the range of stimuli, pseudo-
haptic cues have been shown to be an effective design choice for
new haptic experiences [35]. Such visual-haptic illusions are in-
duced through software-based techniques, allowing to avoid any
hardware modifications. Since sharing software applications can
be easy, this multimodal technique can also enable more remote
interdisciplinary collaborations, in which some team members con-
tribute to the software side of the haptic experience, and others
to the hardware side of the experience. A possible scenario for
combining a haptic device with pseudo-haptic cues can be, e.g., the
simulation of weight in VR. Hardware-based techniques used for
virtual weight such as Triggermuscle [29] or Grabity [6] can be com-
plemented with software-based techniques used for virtual weight
such as the manipulation of the control-display ratio [21, 24].

Designing for standardised input components. Taking established
input components of current interaction devices into consideration
when designing new haptic experiences can be a way for the re-
search community to contribute to the development of standardised
haptic technologies and reduce the dependency on custom-built
systems. In the context of VR haptics, consumer handheld con-
trollers typically offer a shared standard set of buttons including
push buttons, trigger buttons or trackpads. As these controllers
are easily available and accessible, an elevation of their hardware
capabilities for haptic rendering can be a crucial factor towards
scalable and more accessible haptic design research. For instance,
in our previous work we explored the feasibility of augmenting an
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established input component such as the trigger button with haptic
feedback [29]. For the purpose of simulating the weight of virtual
objects, our controller Triggermuscle changes the resistance of the
trigger button and adapts the intensity according to the simulated
virtual weight. Another haptic device, CLAW, followed a similar
concept by extending typical functionalities of a VR controller with
different types of haptic sensations [7]. Since the availability of such
standard buttons and functionalities is not limited to consumer VR
controllers, such concepts of haptic designs are adaptable to a num-
ber of interaction devices. For instance, Sony recently released the
DualSense controller for PlayStation 5 with actuated triggers [28],
while Microsoft announced a locking feature for the triggers of the
Xbox Elite controller [15].

4 CONCLUSION
In this workshop paper, we looked at current challenges for sharing
novel haptic devices with the research community and explored
different steps researchers can take in the design process to promote
an easier deployment and adoption of their technical contributions.
Due to the limitation of standardised systems with haptic comput-
ing capabilities, we see an increased level of collaborating, sharing
and extending of existing and future haptic technologies as an im-
perative step for a sustainable growth of haptic research. For a
holistic reflection, further discussions are necessary regarding stan-
dardisation of measurements, haptic design tools and programming
language.
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